The Numerical Source of Great Pyramid Chamber Dimensions
After discovering how the two upper chambers of the Great Pyramid at Gizeh fit geometrically inside each other,
i realized the logical next step was to build the model.
It was fortuitous when economic factors determined the prototype would be half size
because here the lix dimension formulas are revealed at their most eloquent.
1 lix = 1.001006 feet
At Actual Size, the lix dimensions of the Hi Phive, (King’s), Chamber are determined by the formula: (n[G])^{.5},
where [G] = 73.728 lix, the sum of the seven squared dimensions: 7372.8 divided by 100.
Hi Phive Chamber line squared |
= n[G] |
(n[G])^{.5} = lix dimension |
width = 294.912 |
4[G] |
17.17300207 |
side wall diag = 1548.288 |
21[G] |
39.34829094 |
end wall diag = 663.552 |
9[G] |
25.75950310 |
cubic diag = 1843.2 |
25[G] |
42.93250516 |
length = 1179.648 |
16[G] |
34.34600414 |
ceiling diag = 1474.56 |
20[G] |
38.4 |
height = 368.64 |
5[G] |
19.2 |
total = 7372.8 |
= 100[G] |
And the Point Phive, (Queen’s), Chamber dimensions by the formula: (n[G]/5)^{.5}
Point Phive Chamber line squared x 5 |
= n[G] |
(n[G]/5) ^{.5} = lix dimension |
side wall height = 1179.648 |
16[G] |
15.36 |
width = 1474.56 |
20[G] |
17.17300207 |
length = 1769.472 |
24[G] |
18.81208122 |
apex = 2064.384 |
28[G] |
20.31937006 |
end diag = 2654.208 |
36[G] |
23.04 |
side diag = 2949.12 |
40[G] |
24.28629243 |
floor diag = 3244.032 |
44[G] |
25.47167839 |
apex diag = 3833.856 |
52[G] |
27.69063379 |
cubic diag = 4423.68 |
60[G] |
29.74451209 |
total = 23592.96 = 15.36^{2} x 100 |
= 320[G] |
At Half Size, the dimensions of both Chambers
are generated through the Hi Phive formula: (n[G])^{.5}
The wall height of Hi Phive = (1.25 x 73.728)^{.5} = 9.6 lix
The side wall height of Point Phive = (.8 x 73.728)^{.5} = 7.68 lix.
9.6 / 7.68 = 1.25
1.25^{ .5} = 1.1180339887 = phi – .5
9.6 x 7.68 = 73.728 = [G]
[G]^{ .5} = 8.58650103 lix = width of both half size chambers
brain elevator part 1
line |
(n[G])^{.5} |
= lix dimension |
= 9.6 x |
= 17.17300207 x |
= 7.68 x |
width |
1 |
8.58650103 |
.8^{.5} |
.5 |
1.25^{.5} |
side diag |
5.25 |
19.67414547 |
4.2^{.5} |
1.3125 ^{.5} |
6.5625^{.5} |
end diag |
2.25 |
12.87975155 |
1.8^{.5} |
.75 |
2.8125^{.5} |
cubic diag |
6.25 |
21.46625258 |
5^{.5} |
1.25 |
7.8125^{.5} |
length |
4 |
17.17300207 |
3.2^{.5} |
1 |
5^{.5} |
ceiling diag |
5 |
19.2 |
2 |
1.25^{.5} |
2.5 |
height |
1.25 |
9.6 |
1 |
.3125^{.5} |
1.25 |
volume = 8.58650103 x 17.17300207 x 9.6 = 1415.5776 cubic lix = 19.2[G]
brain elevator: part 2
line |
(n[G])^{.5} |
= lix dimension |
= 7.68 x |
= 17.17300207 x |
= 9.6 x |
side wall height |
.8 |
7.68 |
1 |
.2 ^{.5} |
.8 |
width |
1 |
8.58650103 |
1.25^{.5} |
.5 |
.8^{.5} |
length |
1.2 |
9.40604061 |
1.5^{.5} |
.3 ^{.5} |
.96^{.5} |
apex |
1.4 |
10.15968503 |
1.75^{.5} |
.35 ^{.5} |
1.12^{.5} |
end diag |
1.8 |
11.52 |
1.5 |
.45 ^{.5} |
1.2 |
side diag |
2 |
12.14314620 |
2.5^{.5} |
.5 ^{.5} |
1.6^{.5} |
floor diag |
2.2 |
12.73583919 |
2.75^{.5} |
.55 ^{.5} |
1.76^{.5} |
apex diag |
2.6 |
13.84531689 |
3.25^{.5} |
.65 ^{.5} |
2.08^{.5} |
cubic diag |
3 |
14.87225605 |
3.75^{.5} |
.75 ^{.5} |
2.4^{.5} |
As easy as 1, 2, 3, … 4, 5:
Width is 1/10^{th} the chamber length: 1.717300207 lix
Height is 1/10^{th} the ceiling diagonal: 1.92 lix
the triangles
“Brain Elevator #1″,
constructed Summer 2009
Hi Phive Point Phive Lix Geometry Lixcaliber
cryptographer: stephen langton goulet
master builder: paddy vogelgesang
electrics: lee matheson
accelerator: “v”
© 2012
all rights reserved
“i call it a brain elevator because it does.”